Designing and Implementing a Data Science Solution on Azure (DP-100T01)

 

Course Overview

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

Who should attend

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Certifications

This course is part of the following Certifications:

Prerequisites

Successful Azure Data Scientists start this role with a fundamental knowledge of cloud computing concepts, and experience in general data science and machine learning tools and techniques.

Specifically:

  • Creating cloud resources in Microsoft Azure.
  • Using Python to explore and visualize data.
  • Training and validating machine learning models using common frameworks like Scikit-Learn, PyTorch, and TensorFlow.
  • Working with containersTo gain these prerequisite skills, take the following free online training before attending the course:
  • Explore Microsoft cloud concepts.
  • Create machine learning models.
  • Administer containers in AzureIf you are completely new to data science and machine learning, please complete Microsoft Azure AI Fundamentals first.

Course Content

  • Design a data ingestion strategy for machine learning projects´
  • Design a machine learning model training solution
  • Design a model deployment solution
  • Explore Azure Machine Learning workspace resources and assets
  • Explore developer tools for workspace interaction
  • Make data available in Azure Machine Learning
  • Work with compute targets in Azure Machine Learning
  • Work with environments in Azure Machine Learning
  • Find the best classification model with Automated Machine Learning
  • Track model training in Jupyter notebooks with MLflow
  • Run a training script as a command job in Azure Machine Learning
  • Track model training with MLflow in jobs
  • Run pipelines in Azure Machine Learning
  • Perform hyperparameter tuning with Azure Machine Learning
  • Deploy a model to a managed online endpoint
  • Deploy a model to a batch endpoint

Precios & Delivery methods

Entrenamiento en línea

Duración
4 días

Precio
  • a solicitud
Classroom training

Duración
4 días

Precio
  • a solicitud

Calendario

Español

4 horas de diferencia

Entrenamiento en línea Zona Horaria: Chile Standard Time (CLT)
Entrenamiento en línea Zona Horaria: Argentina Time (ART)

6 horas de diferencia

Entrenamiento en línea Zona Horaria: Peru Time (PET)
Entrenamiento en línea Zona Horaria: Eastern Standard Time (EST)
Entrenamiento en línea Zona Horaria: Colombia Time (COT)

7 horas de diferencia

Entrenamiento en línea Zona Horaria: Central Standard Time (CST)
Entrenamiento en línea Zona Horaria: Central Standard Time (CST)

Inglés

Zona Horaria: Hora central europea   ±1 hora

Entrenamiento en línea Zona Horaria: Greenwich Mean Time (GMT)
Entrenamiento en línea Zona Horaria: Greenwich Mean Time (GMT)
Entrenamiento en línea Zona Horaria: British Summer Time (BST)
Entrenamiento en línea Zona Horaria: British Summer Time (BST)

3 horas de diferencia

Entrenamiento en línea Curso FLEX Zona Horaria: Gulf Standard Time (GST)

6 horas de diferencia

Entrenamiento en línea Zona Horaria: Eastern Standard Time (EST)
Entrenamiento en línea Zona Horaria: Eastern Daylight Time (EDT)
Entrenamiento en línea Zona Horaria: Eastern Daylight Time (EDT)
Entrenamiento en línea Zona Horaria: Eastern Daylight Time (EDT)
Entrenamiento en línea Zona Horaria: Eastern Daylight Time (EDT)

7 horas de diferencia

Entrenamiento en línea Zona Horaria: Central Standard Time (CST)
Entrenamiento en línea Zona Horaria: Central Standard Time (CST)
Entrenamiento en línea Zona Horaria: Central Standard Time (CST)
Entrenamiento en línea Zona Horaria: Central Standard Time (CST)

8 horas de diferencia

Entrenamiento en línea Zona Horaria: Pacific Daylight Time (PDT)
Entrenamiento en línea Zona Horaria: Pacific Daylight Time (PDT)

9 horas de diferencia

Entrenamiento en línea Zona Horaria: Pacific Daylight Time (PDT)
Entrenamiento en línea Zona Horaria: Pacific Daylight Time (PDT)
Instructor-led Online Training:   Este es un curso en línea Guiado por un Instructor
Este es un curso FLEX, que es entregado tanto virtualmente como en el salón de clase.

Europa

Alemania

Munich
Stuttgart
Frankfurt
Hamburgo
Muenster
Frankfurt
Hamburgo
Munich

Francia

París

Suiza

Zurich
Zurich
Zurich
Zurich
Zurich
Este es un curso FLEX, que es entregado tanto virtualmente como en el salón de clase.